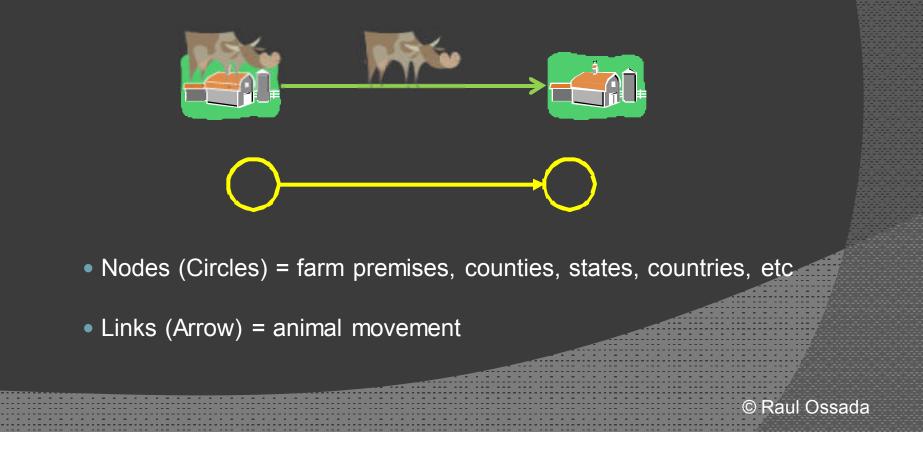
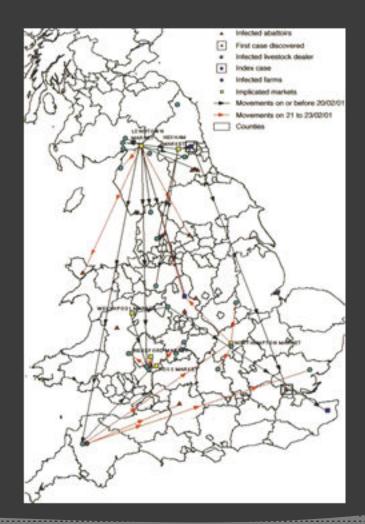
DETECTING LIVESTOCK PRODUCTION ZONES CARACTERIZACIÓN DE CIRCUITOS PECUARIOS

Prof. José H H Grisi-Filho University of São Paulo (USP) Brazil

Context

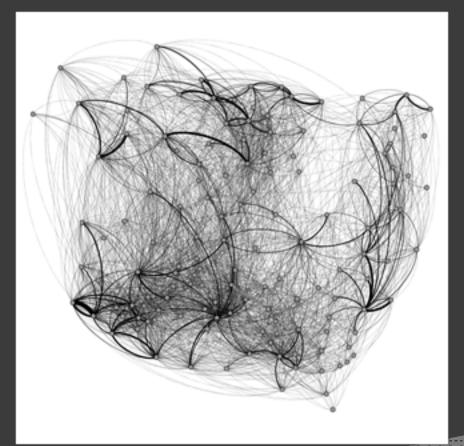

- Guía Técnica de Trabajo 5^a Reunión Extraordinaria de la Cosalfa:
- Characterization of productive systems
 - "To update the bovine productive systems based on farm premises, population, [....], *movement patterns* [...]"
 - "To use the characterization to identify geographic zones [...] that allow subpopulation <u>segregation with minimum</u> <u>impact</u> on the national productive system"
 - "To perform a detailed characterization of the chosen zones based on <u>geolocation and animal movements</u>"
 - "Animal movement information can be processed by <u>network analysis tools</u>..."

Networks in veterinary epidemiology


• How to use network analysis tools in animal movement problems?

Networks in veterinary epidemiology

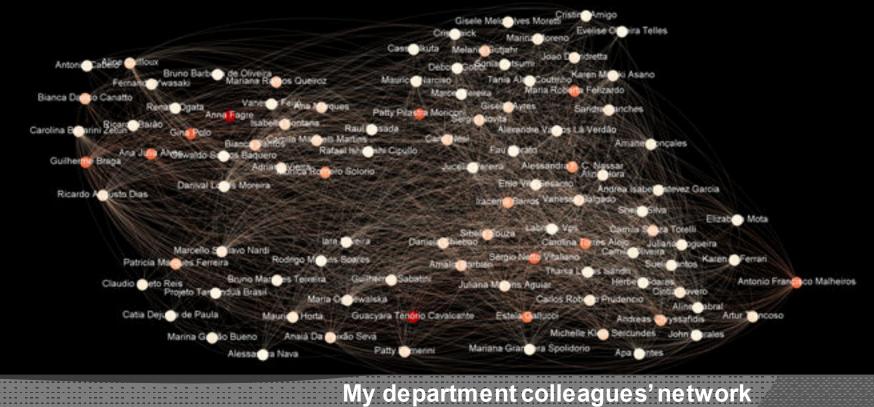
Accounts for movement direction and heterogeneity


An example

Gibbens et al. Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months. **The Veterinary record**, v. 149, n. 24, p. 729–43, 15 dez. 2001.

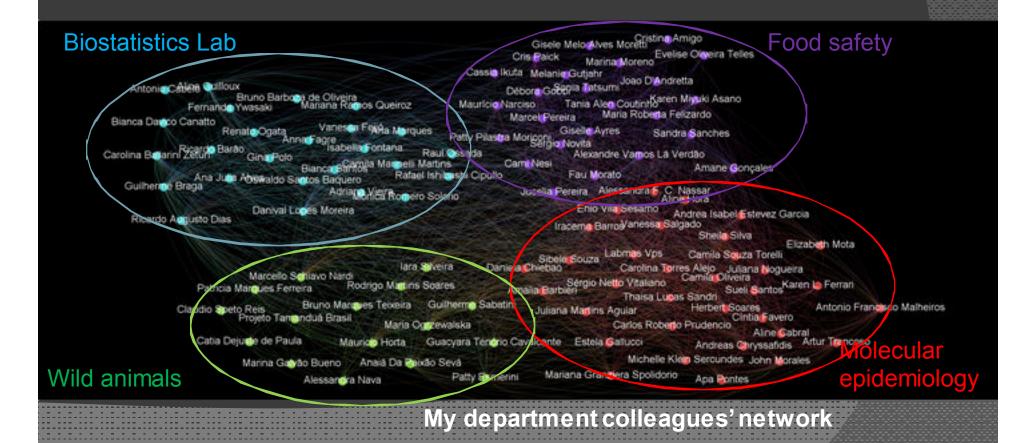
A small fraction of an animal movement network

An example

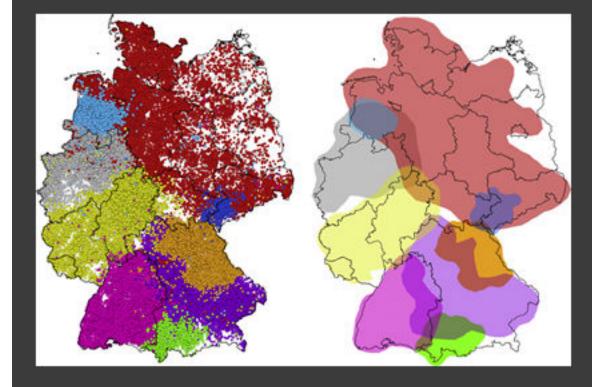


An entire network looks more like this...

Is it possible to split this network into cohesive groups?

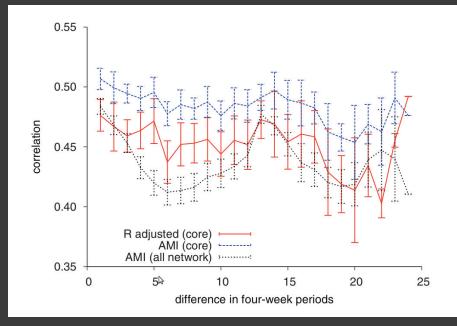

Networks

• It all began in the social sciences



Communities

Sets of nodes intensely connected are called "communitites"

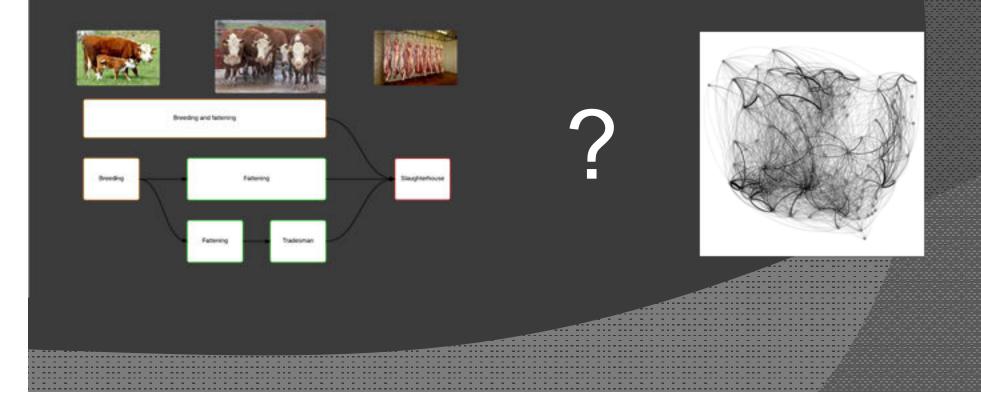

Community analysis in veterinary epidemiology

Lentz et al. Trade communities and their spatial patterns in the German pork production network. **Preventive veterinary medicine**, v. 98, n. 2-3, p. 176– 81, fev. 2011.

ð

Community analysis in veterinary epidemiology

Green et al. Tools to study trends in community structure: application to fish and livestock trading networks. **Preventive veterinary medicine**, v. 99, n. 2-4, p. 225–8, 1 maio 2011.


• Although the concept of livestock production zone is well understand, it is not so easy to define it.

- Although the concept of livestock production zone is well understand, it is not so easy to define it.
- A very (very) simple example of a livestock production cycle:

	Breeding and fattening		K		
Breeding		Fattening	s	aughterhouse	
/	Fattening	Tradesman			

- Although the concept of livestock production zone is well understand, it is not so easy to define it.
- A very (very) simple example of a livestock production cycle:

- A livestock production zone could be defined as:
 - "a set of premises through which an animal will pass during the production cycle"

- A livestock production zone could be defined as:
 - "a set of premises through which an animal will pass during the production cycle"
- Community definition by Kim (2010):
 - "a community is a group of nodes in which a random walker is more likely to stay"

The math behind it

• Modularity:

Kim et al. Finding communities in directed networks. Physical Review E, v. 81, n. 1, p. 1–9, 2010

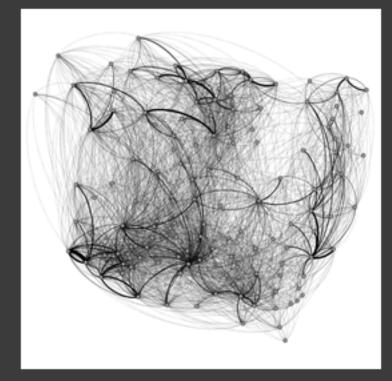
$$Q^{lr} = \sum_{ij} [L_{ij} - \pi_i \pi_j] \delta_{c_i c_j} \qquad \qquad L_{ij} = \pi_i \mathcal{G}_{ij} \qquad \mathcal{G}_{ij} = \frac{w_{ij}}{w_i^{out}}$$

Optimization via Simulated Annealing

 Kirkpatrick et al. Optimization by Simulated Annealing. Science, v. 220, n. 4598, p. 671– 680,1983

 $P(\Delta E) = \exp(-\Delta E/k_{\rm B}T)$

- Validation via Entropy Theory (Variation of Information)
 - Meilă, M. Comparing clusterings—an information based distance. Journal of Multivariate Analysis, v. 98, n. 5, p. 873–895, 2007


 $VI(\mathcal{C}, \mathcal{C}') = H(\mathcal{C}) + H(\mathcal{C}') - 2I(\mathcal{C}, \mathcal{C}').$

$$I(\mathcal{C}) = -\sum_{k=1}^{K} P(k) \log P(k). \qquad I(\mathcal{C}, \mathcal{C}') = \sum_{k=1}^{K} \sum_{k'=1}^{K'} P(k, k') \log \frac{P(k, k')}{P(k)P'(k')}$$

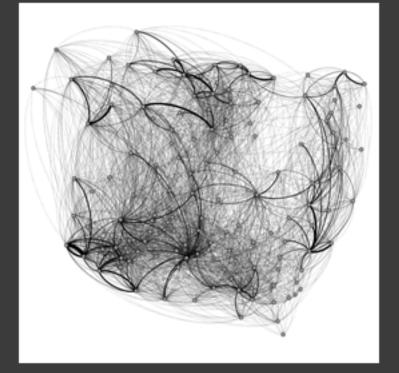
• State of Mato Grosso:

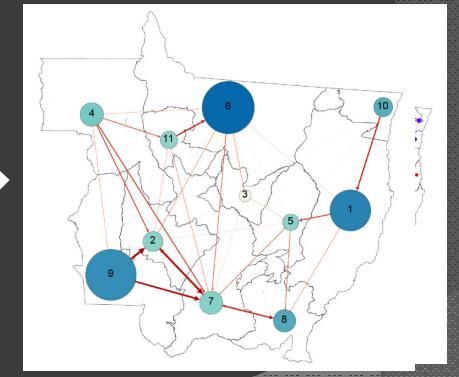
- Largest herd of Brazil
- ~ 30,000,000 bovines
- vast majority in beef herds

- State of Mato Grosso:
 - Largest herd of Brazil
 - ~ 30,000,000 bovines
 - vast majority in beef herds
- Animal trade network (2007)
 - 87.899 premises
 - 521.431 movements
 - 15.844.779 animals moved
 - Animal trade was aggregated by county, resulting in an network with 141 nodes and 3,980 links.

• And after all this:

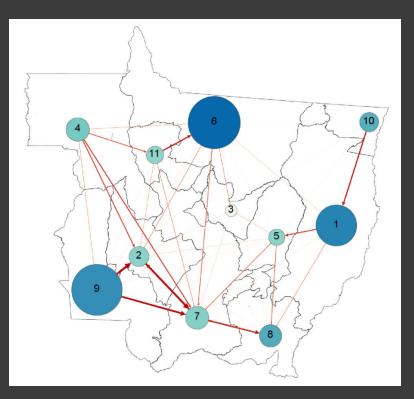
$$Q^{lr} = \sum_{ij} [L_{ij} - \pi_i \pi_j] \delta_{c_i c_j}$$


$$L_{ij} = \pi_i G_{ij} \quad G_{ij} = \frac{w_{ij}}{w_i^{out}}$$


$$P(\Delta E) = \exp(-\Delta E/k_B T)$$

$$VI(\mathcal{C}, \mathcal{C}') = H(\mathcal{C}) + H(\mathcal{C}') - 2I(\mathcal{C}, \mathcal{C}').$$

$$H(\mathcal{C}) = -\sum_{k=1}^{K} P(k) \log P(k).$$


$$I(\mathcal{C}, \mathcal{C}') = \sum_{k=1}^{K} \sum_{k'=1}^{K'} P(k, k') \log \frac{P(k, k')}{P(k)P'(k')}.$$

Size and the size of the size

- Predominant flows:
 - North-South
 - West-East
 - Due to exports to other States

Table 1

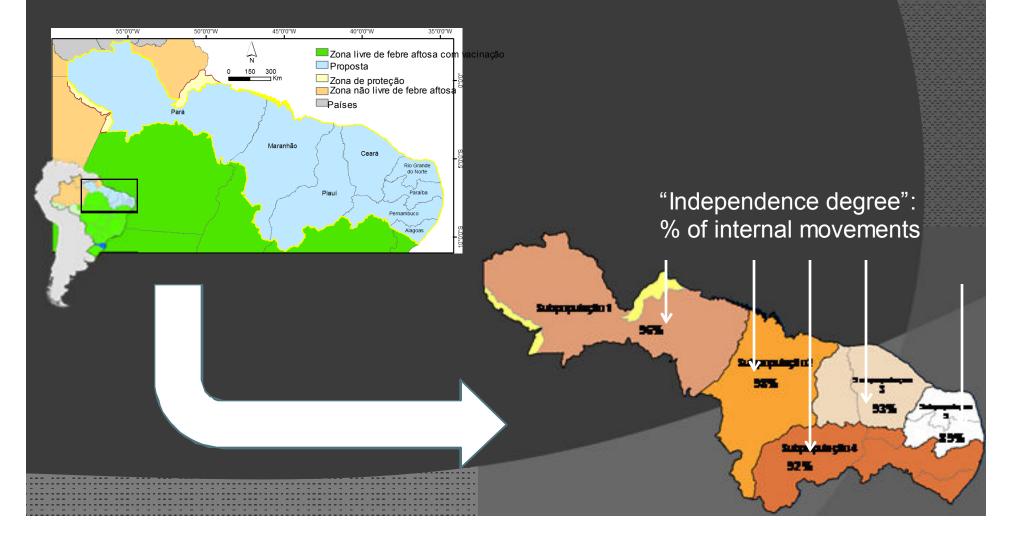
Outgoing moves (%). $A_{ij} = (W_{ij})/(s_i^{out})$, where W_{ij} is the total amount of animal movement from community *i* to community *j*, and s_i^{out} is the amount of community *i* outgoing animals. The found communities show a clear preference to sell animals internally. The animal trade made by the 2 ungrouped counties is not shown.

	1	2	3	4	5	6	7	8	9	10	11	Total # of animals
1	91.60	0.02	0.00	0.00	3.68	0.69	0.27	1.44	0.02	1.56	0.00	2,519,752
2	0.02	71.31	0.13	0.54	1.35	0.80	19.21	0.17	6.26	0.00	0.08	924,083
3	0.00	10.54	39.23	0.00	23.73	10.69	14.72	0.04	1.05	0.00	0.00	89,107
4	0.00	6.53	0.00	76.02	0.01	2.17	7.04	0.02	2.41	0.00	5.80	1,228,075
5	5.56	0.30	0.73	0.00	70.91	0.27	8.78	10.57	0.42	0.00	0.01	523,644
6	0.08	1.11	1.07	0.19	0.00	94.70	1.74	0.18	0.14	0.00	0.74	3,371,829
7	0.28	9.44	0.14	0.17	3.23	1.11	72.46	9.73	2.77	0.00	0.37	1,265,583
8	2.14	0.42	0.00	0.02	3.39	0.20	8.17	83.66	0.78	0.01	0.01	1,016,299
9	0.02	5.31	0.01	0.22	0.02	0.07	4.50	0.16	89.60	0.01	0.07	3,439,689
10	15.18	0.00	0.02	0.00	0.22	0.33	0.00	0.03	0.01	82.57	0.01	724,604
11	0.00	4.10	0.05	3.26	0.00	16.66	5.52	0.01	0.57	0.00	69.83	656,241

Table 2

Incoming moves (%). $A_{ij} = (W_{ij})/(s_j^{in})$, where W_{ij} is the total amount of animal movement from community *i* to community *j*, and s_j^{in} is the amount of community *j* incoming animals. The animal trade made by the 2 ungrouped counties is not shown.

	1	2	3	4	5	6	7	8	9	10	11
1	92.38	0.05	0.01	0.00	15.88	0.52	0.43	3.32	0.01	6.08	0.01
2	0.01	58.75	1.51	0.51	2.13	0.22	11.19	0.14	1.79	0.00	0.12
3	0.00	0.84	44.54	0.00	3.62	0.28	0.83	0.00	0.03	0.00	0.00
4	0.00	7.15	0.03	95.60	0.02	0.78	5.45	0.02	0.92	0.00	12.67
5	1.16	0.14	4.89	0.00	63.59	0.04	2.90	5.05	0.07	0.00	0.01
6	0.10	3.34	45.79	0.67	0.03	94.19	3.71	0.54	0.14	0.00	4.41
7	0.14	10.65	2.18	0.22	6.99	0.42	57.81	11.23	1.09	0.00	0.82
8	0.87	0.38	0.04	0.02	5.90	0.06	5.23	77.57	0.25	0.01	0.02
9	0.03	16.30	0.42	0.78	0.14	0.08	9.76	0.49	95.58	0.03	0.46
10	4.40	0.00	0.15	0.00	0.27	0.07	0.00	0.02	0.00	92.58	0.01
11	0.00	2.40	0.44	2.19	0.00	3.23	2.28	0.01	0.12	0.00	81.47
Total # of animals	2,498,589	1,121,681	78,501	976,503	583,919	3,390,257	1,586,209	1,096,007	3,224,366	646,296	562,458


Observations

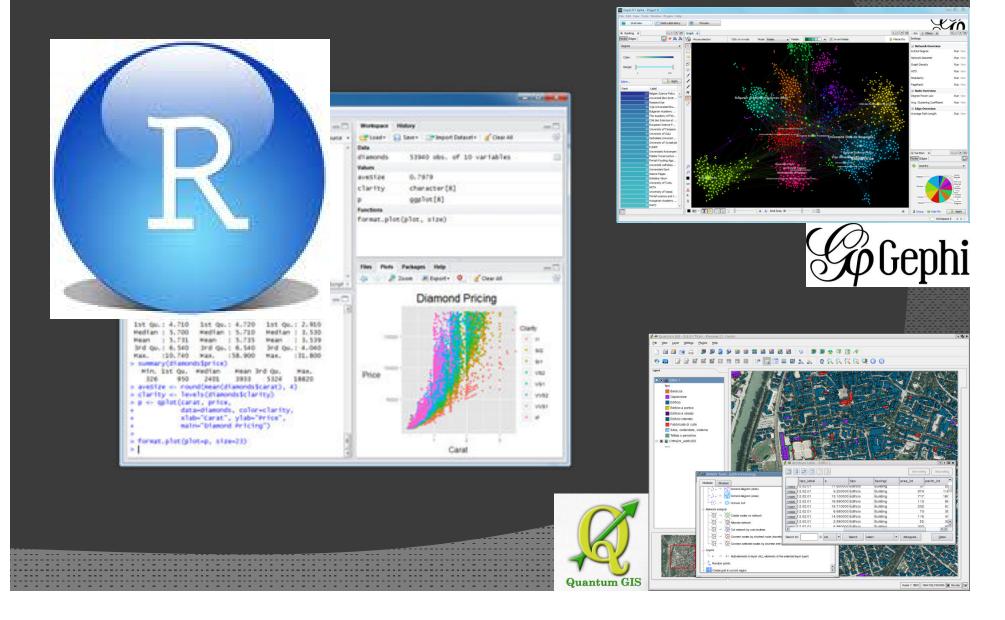
 It is possible (and recommended) to aggregate other sources of information:

- Surveillance system structure
- Population structure
- Livestock system
- Expert opinion
- etc

Recent applications

Moraes, Barbosa Jr, Costa, Araújo, Teixeira, Grisi-Filho, Amaku, Gonçalves. Animal movement analysis and risk characterizaton in studies to evaluate Foot-and-Mouth virus circulation in vaccination areas. *Manuscript in preparation*

What do we need?


- A good information system
 - Animal movements and farm premises
 - Integrity, accuracy, consistency, completeness
- Technological infrastructure
 - Large storage and processing capacity

Human resources

Trained in epidemiology and network analysis

Open Source Softwares

Final remarks

- We can reveal the trade patterns in an animal movement network
 - Leads to a better understanding on the trade relationship between production zones
- Can be used in
 - risk-based surveillance systems
 - stratified sample design
 - target areas for sanitary programs
 - segregate subpopulations with minimum trade impact

Acknowledgments

- INDEA (Instituto de Defesa Agropecuária do Estado do Mato Grosso – Local Veterinary Office)
- MAPA (Ministério da Agricultura, Pecuária e Abastecimento – Ministry of Agriculture)
- FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo – Funding Agency)
- CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico – Funding Agency)

grisi@vps.fmvz.usp.br THANK YOU GRACIAS

LEB